Assessment of phosphorus transfer from agricultural lands to the surface water in France

M. Delmas (1), C. Gascuel-Odoux (2), D. Arrouays (1), O. Cerdan (3), J.M. Mouchel (4)

INTRODUCTION

Phosphorus (P) transfer from agricultural lands to surface water contributes to eutrophication. It has increased attention in the last decades, notably due to a real improvement of water treatment from urban areas which induce a higher relative part of agricultural sources. Methodologies focusing on P transfer from agricultural areas to rivers are thus required, particularly for water quality assessments at large scale, as a part of the implementation of the EU Water Framework Directive.

A model is developed to investigate what is the fraction of P from hillslopes which reaches the rivers systems and finally to better identify the origin of P in French rivers. The model takes into account punctual and diffuse P transfer from agricultural areas to calculate the total P fluxes at the catchment scale. With P Flux the total P Flux at the outlet of the catchment, \(C \) an indicator of the P transfer in the river network, \(P_{\text{tot}} \) an indicator of transfer (connectivity) over hillslopes.

P TRANSFER MODEL

1. Phosphorus sources

- Punctual sources: collection of the national database
- Diffuse sources: total P content at soil surface

2. P delivery in rivers

- Dissolved P (P\(_d\)) fluxes are estimated from climatic-driven method:
 \[P_{\text{Flux}} = Q \times \frac{P_{\text{tot}}}{4} \times C \]

 With \(Q \) the annual modulus discharge [m³/s], \(P_{\text{tot}} \) the instantaneous concentration [mg/L], and \(C \) the instantaneous discharge [m³/s].

- Link with the source:
 \[P_{\text{Flux}} \propto \text{linear relation between the dissolved P fluxes and the dissolved P exported from WWT located within the drained area (Fig. 4).} \]

3. Linking P sources to P delivery at the catchment outlet

- Processes for particulate transfer: erosion and connectivity

 Erosion: P particulate locally mobilised by hydrological erosion: local erosion (E) is calculated from the rill and interrill erosion estimate proposed by Cardan et al. (2010).

 Connectivity index (Delmas, 2011) defined from:
 \[\text{Linear and diffuse connectivity} = f \text{ (water transfer, slope, land use, crusting)} \]

- Description of P delivery to rivers by defining connectivity indices

 - Combination of connected erosion (E*C) and the topsoil P content (Pcont) to describe the potential transfer of P from slopes to river network:
 \[[\text{E} \times \text{C}] \times \text{Pcont} \]
 \[\text{The CE index combined with P content explains a higher part of the variability of the SPF (Fig. 9) than the soil P content alone (Fig. 6).} \]

 - Drainage density DD: to characterises the potential transfer along the river network (it forms a linear relation with the SPF – Fig. 10).

Final model: combination of indices

\[\text{Predicted (SPF)} = a \times ([\text{E} \times \text{C}] \times \text{Pcont}) + b \times \text{DD} \]

The final model combines indices and explains more than 50% of the specific P fluxes observed at the outlet of the 105 selected catchments (Fig. 10).

This model allows drawing a map of the risk of particulate P transfer from hillslopes to the rivers, at the water bodies (for WFD) scale (Fig. 11).

From this model we can see high risks of P transfer in mountainous areas (Alps, Pyrenees and Massif Central) due to high hillslope-river connectivity and also high soil P content particularly for Massif Central. Areas with high soil P content (see Fig. 2) also present a high transfer risk, for example in Britanny.

This study shows that the production of maps of P transfer risk at this scale is feasible using our method and could be used for further modelling of the P cycle and for water quality improvement at the national scale.

Acknowledgement: Authors thank G. Derozier and N. Domange from ONEMA, for providing the database and for their contribution to the management of the project.

Ref:
